
شیوع کووید-۱۹ تاثیرات منفی قابل توجهی بر جهان داشته است. از زمان آغاز شیوع این بیماری تاکنون، بسیاری از افراد به آن مبتلا شدهاند و تعداد قابل توجهی از مردم نیز زندگی خود را از دست دادهاند.
همهگیری کووید-۱۹، بسیاری از پژوهشگران و مقامات حوزه سلامت جهان را وادار کرده است تا ابزارهای مبتنی بر هوش مصنوعی را توسعه بدهند و آنها را حتی پیش از اثبات کامل عملکردشان، به صورت گستردهتری در پزشکی و درمان به کار بگیرند.
سرعت گرفتن تلاشهای پژوهشگران برای مقابله با همهگیری کووید-۱۹، تا حدود زیادی به خاطر حجم گسترده دادهها و تاثیر هوش مصنوعی بوده است. مدلهای مبتنی بر هوش مصنوعی پیش از این نیز در رابطه با شیوع چندین بیماری دیگر نیز مورد استفاده قرار گرفته اند. هوش مصنوعی میتواند نقشی حیاتی در مقابله با کووید-۱۹ داشته باشد.
هوش مصنوعی تاکنون با موفقیت برای تشخیص بیماریها، بررسی بیماران، پیشبینی شیوع بیماری در آینده و خطر مرگ و میر به کار رفته است. کاربردهای هوش مصنوعی، علاقه و امید زیادی را برای مقابله با کووید-۱۹ پدید آوردهاند.
در این گزارش، به زمینههای گوناگون کاربرد هوش مصنوعی در مقابله با کووید-۱۹ میپردازیم.

پیشبینی و ردیابی بیماری
یکی از نرمافزارهای مبتنی بر هوش مصنوعی موسوم به “Bluedot” میتواند با استفاده از دادههای موجود و یادگیری ماشینی، به شناسایی منطقهای بپردازد که کووید-۱۹ در آن شیوع یافته است. نرمافزار دیگری موسوم به “HealthMap”، دادههای مربوط به کووید-۱۹ را گردآوری میکند و آنها را در دسترس قرار میدهد تا ردیابی گسترش این بیماری سادهتر شود.
ردیابی تماس
بررسی بیماران مبتلا به کووید-۱۹
تشخیص به موقع
گروهی دیگر از پژوهشگران، یک مدل جدید یادگیری عمیق را با استفاده از شبکههای پیچیده عصبی ابداع کردهاند که میتواند کووید-۱۹ را با بررسی تصاویر سیتیاسکن تشخیص دهد. سیستم دیگری موسوم به “COVID_MTNet” نیز میتواند قسمتهای درگیر شده ریه را به کمک تصاویر ثبت شده با اشعه ایکس و سیتیاسکن قفسه سینه شناسایی کند.
یک گروه پژوهشی دیگر نیز از سیستمهای طبقه بندی مبتنی بر هوش مصنوعی استفاده میکند تا بیماران را براساس پارامترهای ارائه شده، طبقهبندی کند. این سیستم میتواند تعداد آزمایشهای کووید-۱۹ را در مناطقی که با کمبود امکانات هستند، کاهش دهد.

کاهش مسئولیت کادر درمان
هوش مصنوعی میتواند بیماران را براساس شدت نشانههای بیماری، شرایط ژنتیکی و گزارشهای بالینی طبقهبندی کند تا معاینه و درمان آنها به شکل موثرتری صورت بگیرد.
به کار بردن هوش مصنوعی در پزشکی از راه دور میتواند نیاز مراجعه دائمی به بیمارستان را برطرف کند و از راه دور به نظارت بر حال بیماران و گردآوری دادههای بالینی مربوط به آنها بپردازد. مراجعه کمتر به بیمارستانها، گسترش عفونت را کاهش خواهد داد و بار مسئولیت کارمندان بیمارستان را نیز کم خواهد کرد.
تشخیص ساختار پروتئین
الگوریتم موسوم به “AlphaFold” میتواند به پیشبینی ساختارهای پروتئین بپردازد که تاثیر قابل توجهی در کشف و ارائه دارو دارند. برنامه دیگری موسوم به ” DeepTracer” نیز شبکههای عصبی عمیق را به کار میگیرد تا ساختار پیچیده پروتئین خوشهای کروناویروس را بررسی کند.
توسعه درمان
شرکت انگلیسی “BenevolentAI” از روشهای مبتنی بر یادگیری ماشینی استفاده کرده است تا به کشف دارو سرعت بدهد و داروهایی را که ممکن است در مقابله با کووید-۱۹ موثر باشند، شناسایی کند. شرکت چینی “Insilico Medicine” نیز با استفاده از هوش مصنوعی، چندین مولکول کوچک را شناسایی کرده است که میتوانند به مقابله با کووید-۱۹ کمک کنند.

تولید واکسن
مهار اخبار نادرست
روشهای مبتنی بر هوش مصنوعی میتوانند راهبردی برای بررسی و نظارت بر اخبار باشند و اخبار نادرست و شایعات را شناسایی کنند. هوش مصنوعی میتواند تصویر واضحی را در مورد میزان مرگ و میر، بهبودی بیماران، در دسترس بودن تجهیزات سلامت و شناسایی شکافهایی که در این میان وجود دارند، ایفا کند.
بررسی ژنوم

آیا هوش مصنوعی، فناوری خوبی برای مقابله با کووید-۱۹ است؟
“گری کالینز” (Gary Collins)، استاد “دانشگاه آکسفورد” (University of Oxford) در این باره گفت: لازم است که گزارش کامل و شفافی در مورد جزئیات مربوط به مدلهای پیشبینی کننده کووید-۱۹ ارائه شوند. گزارش ندادن جزئیات مهم، نه تنها به پژوهش آسیب میرساند، بلکه به ارائه یک مدل ضعیف منجر میشود که آسیبهای زیادی را برای تصمیمگیری بالینی به همراه دارد.
پژوهشگران باور دارند که هوش مصنوعی میتواند به ایمن ماندن بیماران و کادر درمان کمک کند، بیمارانی را که به کووید-۱۹ مبتلا نیستند، کنار بگذارد و تضمین کند که بیماران مبتلا به کووید-۱۹ به سرعت درمان میشوند. با وجود این، مدلهای هوش مصنوعی که در رابطه با کووید-۱۹ به کار میروند نیز مانند سایر مدلهای مبتنی بر هوش مصنوعی باید مورد بررسی قرار بگیرند تا عملکرد آنها در دنیای واقعی ارزیابی شود.
این که ابزارهای مبتنی بر هوش مصنوعی چگونه میتوانند بیماریها را تشخیص دهند و به بهبود مراقبت از بیماران منجر شوند، هنوز مشخص نیست؛ به همین دلیل، مدلهای مبتنی بر هوش مصنوعی باید با همکاری کارکنان حوزه سلامت ابداع شوند تا درک بهتر نحوه کارکرد آنها در مراقبت از بیماران امکانپذیر باشد.
اگر ابزارهای هوش مصنوعی نتوانند دقت خود را در رابطه با تشخیص بیماری اثبات کنند و یا بیماریها را به درستی از یکدیگر تفکیک کنند، تشخیص اشتباه و مراقبت نادرست از بیماران افزایش خواهد یافت.
ثبت دیدگاه